Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract Living in nutrient-poor environments, the carnivorous Venus flytrapDionaea muscipulacaptures animal prey to compensate for this deficiency. Stimulation of trigger hairs located on the inner trap surface elicits an action potential (AP). While two consecutive APs result in fast trap closure in wildtype (WT) plants, sustained AP generation by the insect struggling to escape the trap leads to jasmonic acid (JA) biosynthesis, formation of the digestive “stomach”, and release of enzymes needed to decompose the victim. TheDionaea muscipulaDYSCALCULIA (DYSC) mutant is able to fire touch-induced APs, but unlike WT plants, it does not snap-close its traps after two consecutive APs. Moreover, DYSC plants fail to properly initiate the JA pathway in response to mechanostimulation and even wounding, a well-known JA-dependent process conserved among plants. As demonstrated in previous studies, this DYSC mutant defect is associated with impaired decoding of mechanostimulation (i.e. touch) -induced Ca2+signals. External JA application to the trap, however, restores slow trap closure and digestive gland function in DYSC, while rapid trap closure is JA-independent and cannot be rescued by exogenous JA application. Higher frequency mechanostimulation and thus more APs, however, revealed that DYSC is still able to close its traps, albeit much slower than WT plants. To reveal the molecular underpinnings of DYSC’s delayed trap movement, we generated a chromosome-scaleDionaeagenome assembly and profiled gene expression. The refined transcriptomic analysis uncovered widespread misregulation of cell wall-related genes in DYSC, implicating altered cell wall plasticity in the sluggish mutant. Cell indentation studies by atomic force microscopy revealed a strictly localized and strikingly enhanced stiffening of the cell wall for DYSC that may hinder rapid trap closure and snap buckling. Together, these genomic, transcriptomic, and biophysical data identify cell wall elasticity as a key constraint on voltage and Ca2+dependent trap kinetics. This finding documents the interrelationship between mechanosensing and Ca2+signaling in the ultrafast capture organ of the Venus flytrap.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Although the dynamics of collisions between a molecule and a solid surface are ultimately quantum mechanical, decohering effects owing to the large number of interacting degrees of freedom typically obscure the wavelike nature of these events. However, a partial decoupling of internal molecular motion from external degrees of freedom can reveal striking interference effects despite significant momentum exchange between the molecule and the bath of surface vibrations. We report state-prepared and state-resolved measurements of methane scattering from a room-temperature gold surface that demonstrate total destructive interference between molecular states related by a reflection symmetry operation. High-contrast interference effects prevail for all processes investigated, including vibrationally excited and vibrationally inelastic collisions. The results demonstrate the distinctly quantum mechanical effect of discrete symmetries in molecular collision dynamics.more » « lessFree, publicly-accessible full text available February 28, 2026
-
Poly(amidoamine) (PAMAM) dendrimers functionalized with ligands that are designed to interact with biological receptors are important macromolecules for the elucidation and mediation of biological recognition processes. Specifically, carbohydrate functionalized dendrimers are useful synthetic multivalent systems for the study of multivalent protein–carbohydrate interactions. For example, lactose functionalized glycodendrimers can be used to discern the function of galectins, galactoside-binding proteins that are often over-expressed during cancer progression. In order to effectively interpret cancer cellular assays using glycodendrimers, however, their properties in the presence of cells must first be assessed. Macromolecules that are taken up by cells would be expected to have access to many different cell signaling pathways and modes of action that solely extracellular macromolecules cannot utilize. In addition, macromolecules that display cellular toxicity could not be used as drug delivery vehicles. Here, we report fundamental studies of cellular toxicity, viability, and uptake with four generations of lactose functionalized PAMAM dendrimers. In all cases, the dendrimers are readily taken up by the cells but do not display any significant cellular toxicity. The glycodendrimers also increase cellular apoptosis, suggesting that they may abrogate the antiapoptotic protections afforded by galectin- 3 to cancer cells. The results reported here indicate that appropriately functionalized PAMAM dendrimers can be used as nontoxic tools for the study and mediation of both extra and intracellular cancer processes.more » « lessFree, publicly-accessible full text available May 19, 2026
-
Moulin, Leonard (Ed.)The present study investigated the longitudinal direct and indirect relations between mothers’ and fathers’ math ability self-concept, their child-specific math performance expectations and encouragement of math and science-related activities at home, and girls’ and boys’ math ability self-concept. Structural equation models were performed with longitudinal data from three waves of the Childhood and Beyond Study (CAB). The final sample consisted of 517 children and their mothers and fathers. The majority of children attended 2nd (26.1%), 3rd (25.5%) or 5th (40.4%) grade at first measurement point. Our results suggest that mothers and fathers with higher math ability self-concepts had higher expectations of their sons and encouraged their sons more, but not their daughters. Fathers’ math ability self-concept was indirectly related to the self-concept of their sons and this association was mediated by performance expectations. Furthermore, both boys and girls profited from their fathers’ expectations and girls benefitted from their fathers’ encouragement of math and science-related activities at home. In contrast, we found no effects from mothers’ beliefs and behaviors on child’s math ability self-concept. The findings underscore the relevance of fathers’ educational participation in the development of the math self-concept of ability of their children.more » « lessFree, publicly-accessible full text available February 12, 2026
-
Abstract The signal amplification by reversible exchange process (SABRE) enhances NMR signals by unlocking hidden polarization in parahydrogen through interactions with to-be-hyperpolarized substrate molecules when both are transiently bound to an Ir-based organometallic catalyst. Recent efforts focus on optimizing polarization transfer from parahydrogen-derived hydride ligands to the substrate in SABRE. However, this requires quantitative information on ligand exchange rates, which common NMR techniques struggle to provide. Here, we introduce an experimental spin order transfer sequence, with readout occurring at15N nuclei directly interacting with the catalyst. Enhanced15N NMR signals overcome sensitivity challenges, encoding substrate dissociation rates. This methodology enables robust data fitting to ligand exchange models, yielding substrate dissociation rate constants with higher precision than classical 1D and 2D1H NMR approaches. This refinement improves the accuracy of key activation enthalpy ΔH‡and entropy ΔS‡estimates. Furthermore, the higher chemical shift dispersion provided by enhanced15N NMR reveals the kinetics of substrate dissociation for acetonitrile and metronidazole, previously inaccessible via1H NMR due to small chemical shift differences between free and Ir-bound substrates. The presented approach can be successfully applied not only to isotopically enriched substrates but also to compounds with natural abundance of the to-be-hyperpolarized heteronuclei.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract We present JWST-NIRCam narrowband, 4.05μm Brαimages of the Sgr C Hiiregion, located in the central molecular zone (CMZ) of the Galaxy. Unlike any Hiiregion in the solar vicinity, the Sgr C plasma is dominated by filamentary structure in both Brαand the radio continuum. Some bright filaments, which form a fractured arc with a radius of about 1.85 pc centered on the Sgr C star-forming molecular clump, likely trace ionization fronts. The brightest filaments form a “π-shaped” structure in the center of the Hiiregion. Fainter filaments radiate away from the surface of the Sgr C molecular cloud. The filaments are emitting optically thin free–free emission, as revealed by spectral index measurements from 1.28 GHz (MeerKAT) to 97 GHz (Atacama Large Millimeter/submillimeter Array). But, the negative in-band 1 to 2 GHz spectral index in the MeerKAT data alone reveals the presence of a nonthermal component across the entire Sgr C Hiiregion. We argue that the plasma flow in Sgr C is controlled by magnetic fields, which confine the plasma to ropelike filaments or sheets. This results in the measured nonthermal component of low-frequency radio emission plasma, as well as a plasmaβ(thermal pressure divided by magnetic pressure) below 1, even in the densest regions. We speculate that all mature Hiiregions in the CMZ, and galactic nuclei in general, evolve in a magnetically dominated, low plasmaβregime.more » « lessFree, publicly-accessible full text available April 2, 2026
-
Abstract We present James Webb Space Telescope (JWST) Near Infrared Camera observations of the massive star-forming molecular cloud Sagittarius C (Sgr C) in the Central Molecular Zone (CMZ). In conjunction with ancillary mid-IR and far-IR data, we characterize the two most massive protostars in Sgr C via spectral energy distribution (SED) fitting, estimating that they each have current masses ofm*∼ 20M⊙and surrounding envelope masses of ∼100M⊙. We report a census of lower-mass protostars in Sgr C via a search for infrared counterparts to millimeter continuum dust cores found with the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 88 molecular hydrogen outflow knot candidates originating from outflows from protostars in Sgr C, the first such unambiguous detections in the infrared in the CMZ. About a quarter of these are associated with flows from the two massive protostars in Sgr C; these extend for over 1 pc and are associated with outflows detected in ALMA SiO line data. An additional ∼40 features likely trace shocks in outflows powered by lower-mass protostars throughout the cloud. We report the discovery of a new star-forming region hosting two prominent bow shocks and several other line-emitting features driven by at least two protostars. We infer that one of these is forming a high-mass star given an SED-derived mass ofm*∼ 9M⊙and associated massive (∼90M⊙) millimeter core and water maser. Finally, we identify a population of miscellaneous molecular hydrogen objects that do not appear to be associated with protostellar outflows.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
